CO₂ Transport and Storage as a Service

Carbon Capture & Storage

Context

- → COP21 in 2015 resulted in Paris agreement
 - Pursue limit global temperature increase to 1.5°C
 - Countries to submit plans

→ European Green Deal

- 2030 goal 55% reduction compared to 1990
- Net-zero greenhouse gas emissions by 2050

→ Norway's Climate Action plan

- 2030 goal 55% reduction compared to 1990
- Transportation, CCS, Renewable Energy

Carbon Capture & Storage

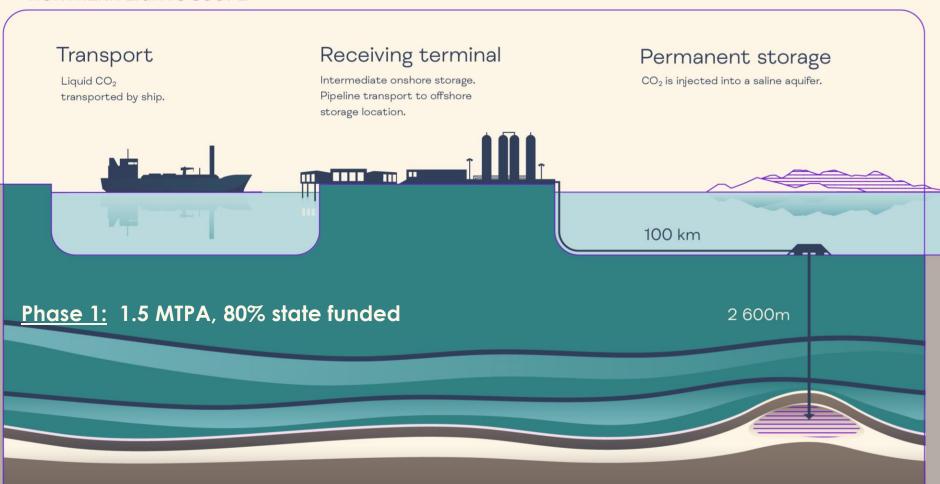
- → Net zero Industry act
 - 50 mtpa injection capacity by 2030
- →To achieve climate target in Europe
 - 280 mtpa by 2040
 - 450 mtpa by 2050
- Norway has great geology that can enable carbon storage
- → In 2020 the Norwegian government decided to support a full scale demonstration project for CCS: The Longship Project

The Longship project

- A demonstration of large-scale, end-to-end CCS value chain consisting of:
 - Cement manufacturing plant
 - Waste-to-energy facility
 - Northern Lights CO2 transportation and storage
 - Longship has co-financed Northern Lights Phase 1 with a capacity of 1.5 million tons of CO2 per year (80% state)
 - State participation critical to de-risk initial investment and operation period

CO₂ transport & storage at scale - Longship

NORTHERN LIGHTS SCOPE


CO₂ capture

Capture from industrial plants. Liquefaction and temporary storage.

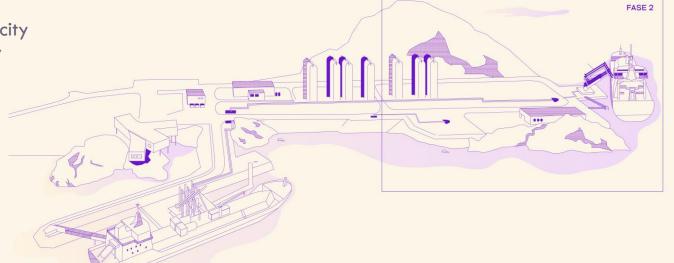
CCS heritage

- Joint Venture between Equinor, Shell, and TotalEnergies
- Partnership established in 2017 JV established in 2021
- 28 years of operational CO₂ storage experience on the Norwegian Continental Shelf (NCS)

Phased development

→ Northern Lights Phase 1

- 1.5 MTPA capacity, ready for start-up 2024
- 3 ships á 7,500m3 and 2 wells (one back-up)
- Phase 2 pre-investment in civil works and oversized pipeline
- Combination of commercial volumes and Longship volumes


→ Northern Lights expansion (Phase 2): commercial development

• "Filling the pipeline": 5-7 MTPA

 Additional ships, storage tanks, increased pump capacity and associated utilities, more offshore wells, new jetty

→ Growth

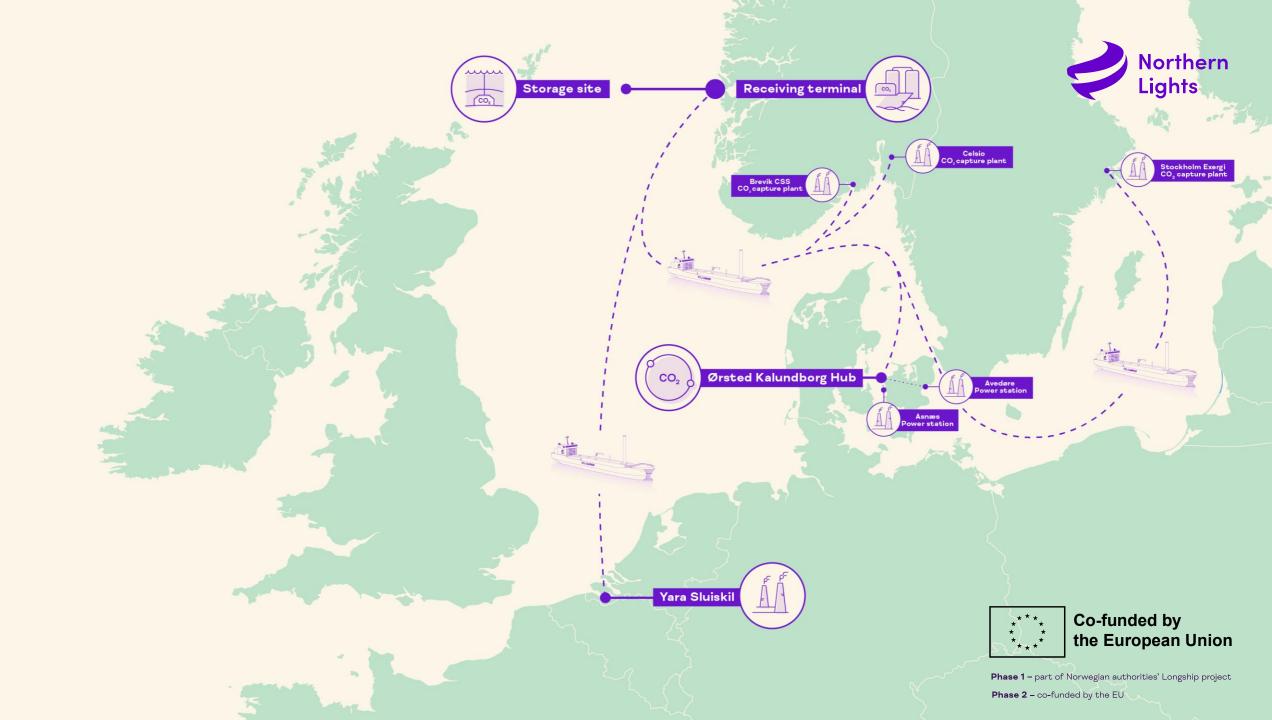
- Additional pore space
- Concept not yet determined
- Storage licenses actively pursued by several players

Phase 2 development

- "Filling the pipeline": 5-7 MTPA
- Additional ships, storage tanks, increased pump capacity and associated utilities, more offshore wells, new jetty

Commercial Customers

Yara


- Ammonia and fertiliser plant in Sluiskil Netherlands
- Transport and Services
 Agreement signed Oct 2023
- 800,000 tonnes CO₂ annually

Ørsted

- Bioenergy plants in Denmark
- Transport and Services
 Agreement signed May 2023
- 430,000 tonnes CO₂ annually

Stockholm Exergi

- BECCS project in Stockholm, Sweden
- Transport and Services
 Agreement signed March 2025
- 900.000 tonnes CO₂ annually

Project Development

Normal oil & gas

Develop project to harvest business case

- Technical maturation with DGs
- Risks identified
- Concept freeze early
- Not schedule driven

CCS / Northern Lights

Tested Regulatory framework not in place

No business case

Resource is NOT known, validated:

- Not reservoir
- Not CO2

No normal markets

Develop project to build future markets

- Technical maturation with DGs
- Identified risks, and many
- Concept *partly* frozen early
- Schedule driven

Establishing a CCS market

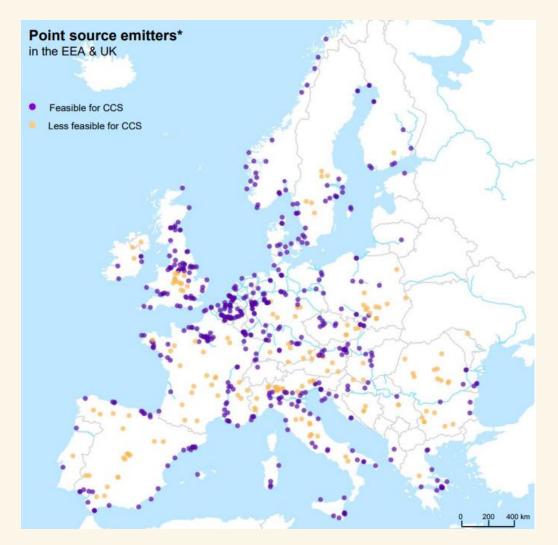
Northern Lights

- →Northern Lights is the first to commercialise CO2 transport and storage as a service
- →Significant interest and demand for our services from industrial emitters
- →Strong faith in the commercial viability of a CCS market

Challenges

- →De-risking investments in infrastructure development on capture and storage side
- →Establishing first of its kind contracts for transport and storage
- →Streamlining and adapting regulatory framework
- →Establishing bilateral agreements for cross-border CO2 transport
- →Changing geopolitical situation: energy security vs. climate targets

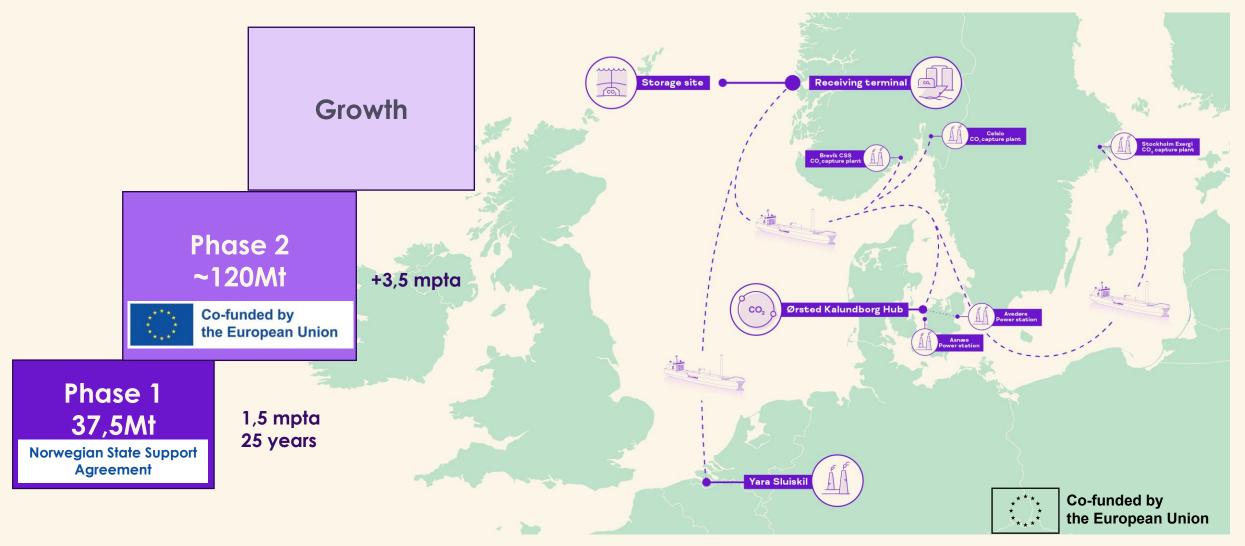
CCS Market Potential in Europe: 320 mtpa


Hard-to-abate sectors:

- Waste Incineration
- Cement
- Steel and Aluminium
- Petrochemicals
- Ammonia and Fertilisers

Blue Hydrogen

Negative-emission solutions:


- Bioenergy with CCS (BECCS)
- Direct Air Capture (DAC)

Source: Rystad Energy research and analysis

Cross border collaboration

Phase 1 - part of Norwegian authorities' Longship project

Phase 2 - co-funded by the EU

CO2 is not HC – Some key points

	CCS	Hydrocarbon Facilities
Characteristic	CO2 is heavy gas at atmospheric condition, non flammable, non-toxic, but can cause suffocation NL transports CO2 at liquid phase: cryogenic and under pressure; Very cold (T < -78 o C) if released from liquid to atmosphere; Solvent to non-metallic materials	Gas or liquid at atmospheric condition, gas phase is lighter than air, flammable if mixed at air at certain flammable limit (namely LFL and UFL). Toxic if contains H2S
Hazard	Suffocation at high concentration of CO2 Equipment embrittlement and cryogenic burns Corrosion – CO2 in combination with free water becomes corrosive (No water allowed – equipment is not designed for it) Static electricity if released from dense conditions	Fires and explosions risk due to ignition and turbulence generated in the surroundings of gas cloud Smoke resulting from fire can create hazard of suffocation and hinder evacuation. Processed HC - not corrosive if free from contaminant «Crude» HCs are corrosive –equipment designed for it
Fire & Gas Detection	CO2 Gas detection is placed at low elevation. Alarm/confirmed at 0.5%-1.5% vol Personal gas detection in culvert, pump pit and confined space	Flame and Flammable/ Toxic gas detection are installed in process area. Alarm/confirmed detection at 10-20% LEL.
Flare, Blowdown, and Drain	No flare/blowdown. Short Tail pipe PSV at tanks is directed to atmosphere safe location. No specific closed / open drain required. Terrain is designed to lead CO2 towards sea.	Blowdown and flare are used to discharge gas safely in case of an accidental leak. Closed drain system for HC contaminated drains. Open drain is used to discharge liquid safely and each fire area
Ignition Source Control	No electrical isolation nor ATEX required during CO2 leak. Static electricity if CO2 released from dense conditions might create ignition source in CO2 plant with HC processing presence.	Electrical isolation is important during gas leak. ATEX certification is required for ignition source control on the process area.
Escape, Evacuation, Rescue	Wind sock is critical during emergency response Use of luminescence/ reflective paint is important in escape route marking	Escape routes yellow markings + safety signes Wind sock is critical during emergency response

Northern Lights onshore facilities

Simplified sketch of the systems

Marine loading arms

Purpose: interface between ship manifold and onshore facility. Transfer of liquid CO_2 from ship and return vapour back to ship.

- Liquid: Flow rate up to 800 m³/hr
- Vapour return: Flow rate up to 800 m³/hr

Online analyzers

Purpose: online analyzer of H_2S , H_2O , O_2

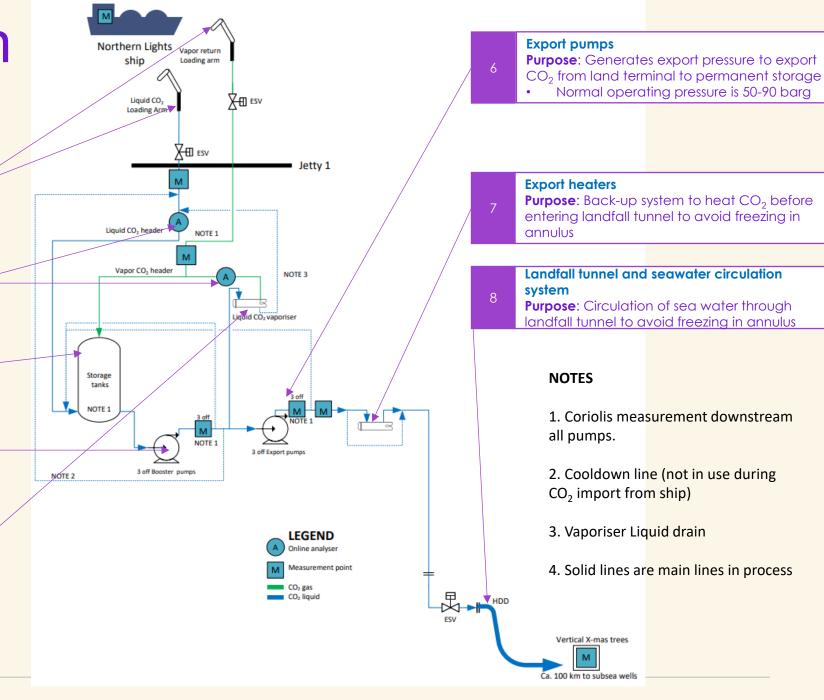
· Both liquid inlet and gas return

Intermediate storage tanks

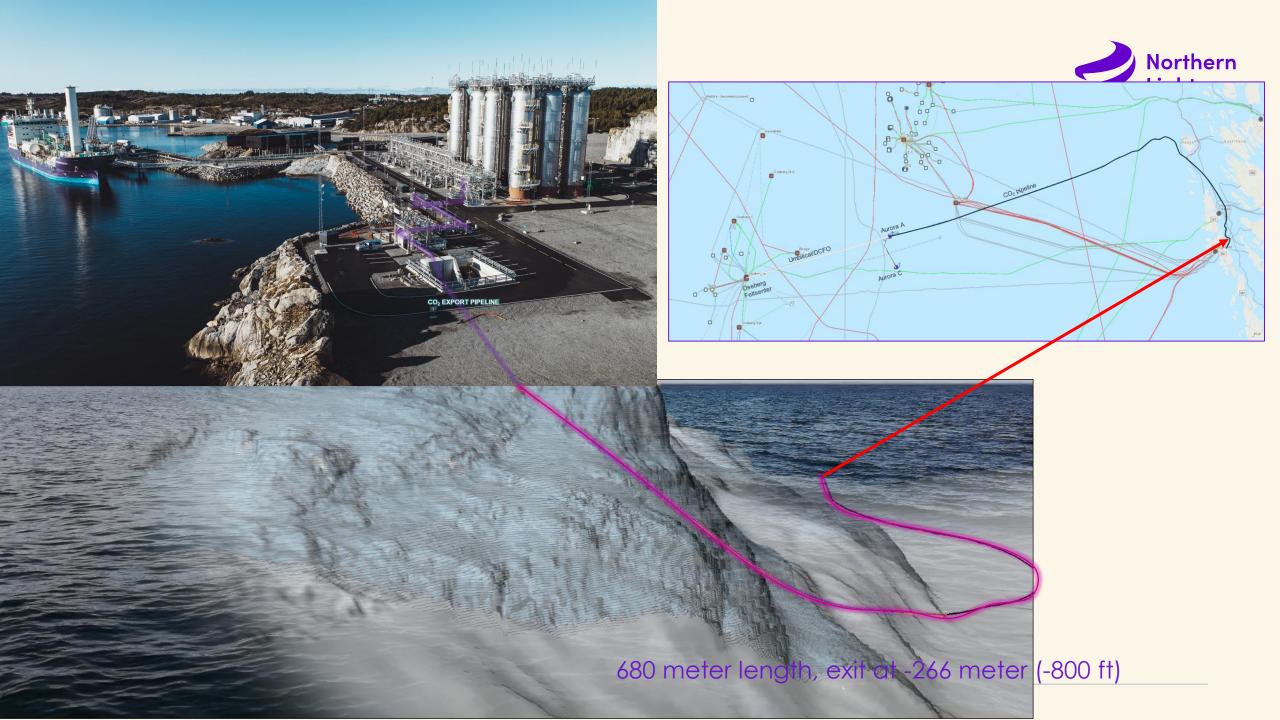
Purpose: Intermediate storage of CO₂.

- Storage capacity 8 250 m³ (1 ship load + 10%)
- 12 tanks (act as one unit)

Booster pumps


Purpose: Provide sufficient Net Positive Suction Head (NPSH) to the export pump.

- 3 x 50%
- Fixed speed centrifugal pump


Liquid CO₂ vaporizer

Purpose: Generate vapor CO_2 for maintaining the pressure in the CO_2 storage tanks and ship tanks during ship offloading and injection operations.

• Electrical heaters: 2 x 100% configuration

5

Pipeline

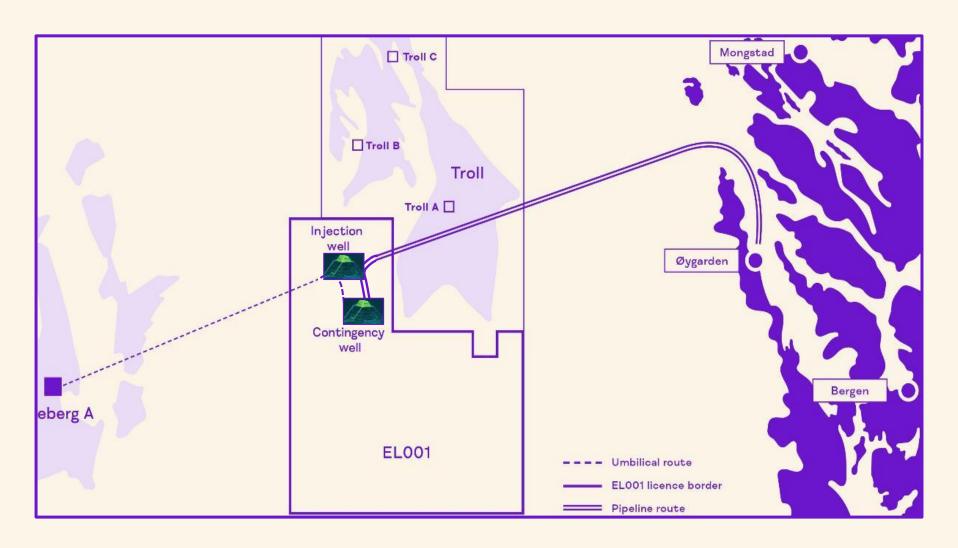
Vigra - Norway

Pipeline Installation

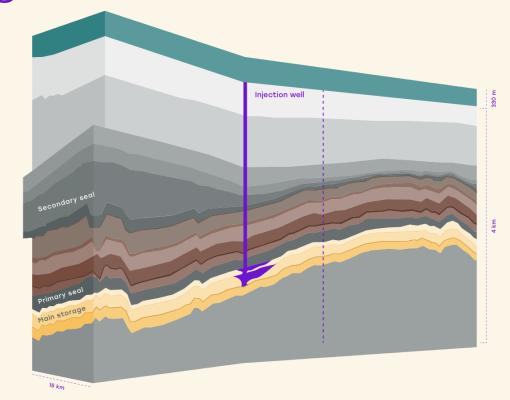
- Reel-Lay
- Seven Oceanic

Northern

- About 100 km 12"
- 14 000 T / 9400 joints
- Manufactured in Italy (Tenaris)
- Coated in Norway (Shawcor)



Subsea Facilities and Wells



World Class Geological Storage

Northern Lights Storage ("Aurora" License)

- Deep, offshore: Porous rock (sandstone) formation 2600 m below seabed, 100 km offshore
- → High Quality: Confirmed (dynamically tested) as highly permeable
- → Build on Experience: CO₂ has been stored offshore Norway for more than 25 years (Sleipner, Snøhvit)
- \rightarrow Safe and permanent
 - Two proven, independent dynamically tested seals ("cap rocks")
 - Storage utilises the same trapping mechanisms that have kept oil and gas underground for millions of years
 - Tectonically quiet area
 - No legacy wells (leakage potential) within the license

Monitoring Strategy

IN-WELL MONITORING

for assessment of
Injection well performance
Storage pressure
development

ACTIVE / 4D SEISMIC MONITORING

for assessment of CO₂ plume migration (dimension and speed)

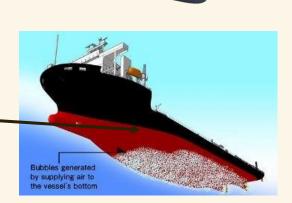
PASSIVE / NATURAL SEISMIC MONITORING

for assessment of

- Natural seismicity
- **Potential induced seismicity**

CO₂ Ships

- Norther Pioneer and Pathfinder have been delivered.
- Vessel 3 to be delivered 30th November 2025
- Vessel 4 to be delivered 30th May 2026


Ships specifications

New type of vessels for a new industry

Enabling access to industrial emitters all over Europe, the shipping solution is a flexible model that can be scaled to market demand

- → **Dimension:** Length: 130 m, width 21m and 8 m draft
- → Cargo tanks capacity :
 - 7,500 m³ (2 X 3750 m³), 15 barg and -26°C,...
 - Purpose-built pressurised cargo tanks (type C tanks)
- → Low emission ships with low consumption
 - Wind assisted propulsion system (Rotor sail) and
 - Air lubrication for the hull—
 - Electrical connection at quay side during operations
 - The above will reduce carbon intensity by around 34% compared to conventional systems

Benefit realisation

- Knowledge and experience sharing important part of our mandate
- Welcomed more than 12 000
 visitors to site since construction
 start in 2021
- Representing 70 countries across the world

